BIOLOGY

MAT REVIEW COURSE 2024

imat alpha®

imat alpha®

INTRO TO BIOLOGY FOR THE IMAT

imat alpha®

TABLE OF CONTENTS

01 · Properties of life

02 · Bio Organisation

04 · Chemical bonds

05 · Role of water

06 · Acid and Bases

PROPERTIES OF LIFE

- Life is complex and diverse, with unique characteristics.
- These characteristics include metabolism, growth and development, response to stimuli, maintaining balance (homeostasis), reproduction, and evolution.
- By understanding these characteristics, we can better understand the complex world of **living organisms**.

REPRODUCTION AND EVOLUTION

- Reproduction is the ability of **living** organisms to create **offspring**, either through **sexual or asexual means**.
- Sexual reproduction involves the **combination of gametes from two individuals**, resulting in genetically **diverse** offspring.
- Evolution is the process through which **living** organisms **gradually change** and **adapt over time**, allowing them to better **survive and reproduce** in evolving environments.

METABOLISM

- Metabolism is the process by which living organisms convert energy and matter to sustain themselves.
- It includes the transformation of **food** and other resources into **usable energy** for cellular activities.
- Metabolism is **crucial** for **maintaining life** and allows organisms to perform their **biological functions**.

GROWTH AND DEVELOPMENT

- This process, regulated by **genes**, involves the **creation of proteins** and other cellular components.
- Starting from a **fertilized egg**, organisms go through **various** developmental stages to become **fully formed adults**.

TABLE OF CONTENTS

01 · Properties of life

02 · Bio Organisation

04 · Chemical bonds

05 · Role of water

06 · Acid and Bases

MOLECULES

- Molecules are the **smallest units** of **biological** organization and serve as the fundamental **building blocks of life**.
- Examples include **DNA**, **proteins**, and carbohydrates.
- Molecules are crucial for numerous biological processes and are essential for the proper functioning of cells and organisms.

MEMBRANE-BOUND ORGANELLES

- Organelles are **specialized** structures within cells that carry out specific functions.
- Examples include **mitochondria**, which generate energy, and the nucleus, which contains genetic material.
- These organelles are crucial for the proper **functioning** and organization of cells.

CELLS

- Cells are the fundamental unit of life and are capable of performing all essential life processes.
- They can be either **prokaryotic** (without a nucleus, bacteria) or **eukaryotic** (with a nucleus, animals).
- Cells are the **building blocks of all living organisms** and vary greatly in structure and function.

PROKARYOTE VS EUKARYOTE

	PROKARYOTE	EUKARYOTE
DNA	Single circular chromosome	Organised into multiple chromosomes
NUCLEOUS	Dont have a nucleous	Has a nucleus enclosed by a membrane
ORGANELLES	No membrane bound organelles	Contain membrane bound organelles
EXAMPLES	Archaea, Bacteria	Plants, Animals, Fungi

TISSUES AND ORGANS

- Tissues are **collections** of similar **cells working together** to perform specific **functions**.
- Examples include epithelial tissue and muscle tissue.
- Organs are made up of various tissues and are specialized for particular functions, such as the heart, lungs, and liver.

ORGANISMS, POPULATIONS, COMMUNITIES

- Organisms can be **single individuals** or part of **larger groups**, such as an ant colony or a bird flock.
- Populations are groups of individuals of the same species living in the same area.
- Communities are made up of various species living together in a shared environment.

ECOSYSTEMS AND THE BIOSPHERE

- Ecosystems are **communities** of **living organisms** interacting with their **physical** and **chemical surroundings**.
- They include the relationships between organisms and their environment.
- The biosphere is the global sum of all ecosystems, encompassing all living organisms and their environments on Earth.

ECOSYSTEMS AND THE BIOSPHERE

- Ecosystems are **communities** of **living organisms** interacting with their **physical** and **chemical surroundings**.
- They include the relationships between organisms and their environment.
- The biosphere is the global sum of all ecosystems, encompassing all living organisms and their environments on Earth.

TABLE OF CONTENTS

01 · Properties of life

02 · Bio Organisation

04 · Chemical bonds

05 · Role of water

06 · Acid and Bases

CHEMICAL BONDS

- Chemical bonds are the forces that connect atoms to form molecules and compounds.
- Covalent bonds involve sharing electrons between atoms, while ionic bonds involve transferring electrons.
- Understanding chemical bonds is **essential** in chemistry, biology, and materials science.

COVALENT BONDS

- Covalent bonds occur when atoms share a pair of valence electrons.
- This sharing creates a stable molecule or compound.
- Nonpolar covalent bonds involve equal sharing of electrons, whereas polar covalent bonds result in partial charges due to unequal sharing.
- Covalent bonds are crucial in both biological and chemical systems.

IONIC BONDS

- Ionic bonds form when positively and negatively charged ions attract each other.
- Ions are created when atoms either gain or lose electrons, resulting in positive or negative charges.
- Ionic bonds involve a complete transfer of electrons.
- An analogy with magnets can help illustrate the attraction between oppositely charged ions.

ANALOGY

- Nonpolar covalent bonds can be compared to two friends equally sharing a sandwich, where each person takes half, resulting in an even distribution.
- Polar covalent bonds are like two friends sharing a sandwich where one person takes a larger portion, leaving the other with less.
- These analogies help to visualize how electrons are shared equally in nonpolar covalent bonds and unequally in polar covalent bonds.

WEAK CHEMICAL INTERACTIONS

- <u>Hydrogen Bonds</u>: These occur between **electronegative atoms** and help stabilize **biological molecules**.
- <u>Van der Waals Interactions</u>: These involve **fluctuations** in electron density and influence the **three-dimensional shape of large molecules**.
- <u>Hydrophobic Interactions:</u> These occur between **nonpolar** molecules when they are in the presence of **water.**

ROLE OF WEAK CHEMICAL INTERACTIONS

- Hydrogen bonds stabilize structures such as the DNA double helix.
- Van der Waals interactions help determine the three-dimensional structure of proteins.
- **Hydrophobic interactions** are important for protein folding and the formation of membranes.
- Weak chemical interactions are essential for the structure and interactions of biomolecules.

TABLE OF CONTENTS

01 · Properties of life

02 · Bio Organisation

04 · Chemical bonds

05 · Role of water

06 · Acid and Bases

PROPERTIES OF WATER

- Water's Unique Shape: Water's shape allows it to form hydrogen bonds with other water molecules.
- Excellent Solvent: Water effectively dissolves ions and polar molecules.
- **Heat Retention:** Water's ability to retain heat contributes to temperature stability in living organisms.

"LIKE DISSOLVES LIKE" AND SOLUBILITY

- The phrase "like dissolves like" describes how substances tend to dissolve in solvents with similar properties.
- Polar substances dissolve well in polar solvents, while nonpolar substances dissolve better in nonpolar solvents.
- This principle explains why oil and water do not mix well, as they have different properties.

MORE UNIQUE PROPERTIES

- **Density**: Water is less dense as a **solid**, causing ice to float on liquid water.
- Cohesiveness: Water molecules stick to each other effectively due to cohesive properties.
- **Human Body Composition:** About **60-70%** of the human body is water, highlighting its essential role in life.

WATER'S IMPORTANCE FOR LIFE

- Universal Solvent: Water facilitates the transport of nutrients, waste, and molecules within organisms.
- **Medium for Reactions:** It provides a medium for biochemical reactions, enabling vital chemical processes.
- Temperature Regulation: Water's high heat capacity helps maintain stable conditions for biological functions.

WATER'S IMPORTANCE FOR LIFE

- Cellular Component: Water is a fundamental part of cells, providing structure and support.
- Lubrication: It reduces friction and protects organs from damage.
- **Dissolving Substances**: Water's ability to **dissolve** various substances is crucial for transportation and regulating **body temperature**.

HIGH HEAT CAPACITY OF WATER

- **Heat Absorption:** Water can absorb or release large amounts of heat without significant changes in temperature.
- **Hydrogen Bonds:** Its high heat capacity is due to the hydrogen bonds between water molecules.
- Specific Heat Capacity: Water has the highest specific heat capacity among liquids.

ROLE IN BODY TEMPERATURE REGULATION

- Thermal Buffer: Water evenly distributes heat throughout the body, helping to maintain a stable temperature in warm-blooded animals.
- **Heat Transfer:** It transfers heat from warmer areas to cooler areas, similar to a car's cooling system.

HEAT OF VAPORIZATION

- Energy Requirement: The energy needed to convert water from liquid to gas is high.
- **High Heat of Vaporization**: Water requires **significant energy** to transition to the **gaseous phase (steam)**.
- **Evaporation:** As water evaporates, it absorbs energy, leading to a **cooling** effect in the environment.

WATER AS A SOLVENT

- **Polarity**: Water is a **polar** molecule with **positive** and **negative** ends due to its oxygen and hydrogen atoms.
- Dissolving Capability: Water's polarity allows it to dissolve polar molecules and ionic compounds.
- Hydration Shell: When ions or polar molecules are added to water, hydrogen bonds form around them, creating a hydration shell that keeps them dispersed.

WATER AS A SOLVENT

• This creates a **hydration** shell or sphere of hydration around the particles, keeping them separated or dispersed in water.

COHESION AND ADHESION OF WATER

- Cohesion: Water molecules stick to each other due to hydrogen bonding. This creates surface tension and allows water to form droplets.
- Adhesion: Water molecules stick to other surfaces, such as plant cell walls, also through hydrogen bonding.
- Capillary Action: Cohesion and adhesion are crucial for capillary action, which enables water to move up plant stems against gravity.
- Biological Implications: These properties are important for hydration in organisms and facilitate movement in creatures like water striders.

TABLE OF CONTENTS

01 · Properties of life

02 · Bio Organisation

04 · Chemical bonds

05 · Role of water

06 · Acid and Bases

ACID VS BASE

- Acids release hydrogen ions (H+) in water, while bases release hydroxide ions (OH-).
- The strength of an acid or base is measured by its dissociation constant.
- Biological molecules, such as amino acids, can be acidic or basic, influencing their structure and function.
- pH levels affect enzyme activity, and biological systems tightly regulate pH through buffering systems.

ACIDS

- Acids release **hydrogen** ions (H⁺) when **dissolved** in water.
- They play key roles in biological processes, such as **enzyme** activity and energy transfer.
- Hydrochloric acid (HCl) assists in digestion, and carbonic acid (H₂CO₃)
 helps maintain pH balance in biological fluids.
- **High concentrations** of acids can be detrimental by lowering pH and denaturing proteins.

BASES

- Common bases in biological systems include sodium hydroxide (NaOH) and ammonia (NH₃).
- Bases are crucial for enzyme function and the removal of protons during metabolism.
- High concentrations of bases can be harmful by raising pH and denaturing biomolecules.
- Biological systems have **mechanisms to regulate base** concentrations and maintain **stable pH levels**.

ACID VS BASE

	ACID	BASE
Definition	Release hydrogen ions in water	Release Hydroxide ions in water
Chemistry	Dissociation of H+ Ions	Dissociation of OH- Ions
Function	Help with digestion, enzyme activity.	pH regulation, proton removal in metabolism
Effect on pH	Decrease	Increase pH
Examples	Hydrochloric acid (HCl), Carbonic Acid (H2CO3)	Sodium Hydroxide (NaOH), Ammonia (NH3)

pH BUFFERS

- pH buffers are crucial for maintaining stable pH levels in the body, which is essential for proper functioning and preventing harm.
- Examples of buffers include those found in blood, stomach, and urine.

BICARBONATE BUFFER SYSTEM

- The bicarbonate buffer system is the **primary buffering mechanism** in the body.
- It involves an **equilibrium reaction** between carbonic acid (H₂CO₃) and bicarbonate ions (HCO₃⁻).
- This system regulates the concentrations of bicarbonate and hydrogen ions in the blood.
- It helps maintain pH balance by neutralizing excess hydrogen ions or bicarbonate ions.

pH BALANCE IN THE BLOOD

- When blood pH becomes too acidic, bicarbonate ions react with excess hydrogen ions to form carbonic acid.
- Carbonic acid then breaks down into water and carbon dioxide, which helps remove the excess hydrogen ions.
- When blood pH is too **basic**, the process **reverses**, breaking down carbonic acid to **release** additional bicarbonate ions.

pH BALANCE IN THE BLOOD

- When blood pH becomes too acidic, bicarbonate ions react with excess hydrogen ions to form carbonic acid.
- Carbonic acid then breaks down into water and carbon dioxide, which helps remove the excess hydrogen ions.
- When blood pH is too **basic**, the process **reverses**, breaking down carbonic acid to **release** additional bicarbonate ions.

ANY QUESTIONS?

MESSAGE ON WHATSAP

imat alpha®